On the number of real critical points of logarithmic derivatives and the Hawaii conjecture

نویسندگان

  • Mikhail Tyaglov
  • Thomas Craven
  • George Csordas
چکیده

For a given real entire function φ with finitely many nonreal zeros, we establish a connection between the number of real zeros of the functions Q = (φ/φ) and Q1 = (φ /φ). This connection leads to a proof of the Hawaii conjecture [T.Craven, G.Csordas, and W. Smith, The zeros of derivatives of entire functions and the Pólya-Wiman conjecture, Ann. of Math. (2) 125 (1987), 405–431] stating that the number of real zeros of Q does not exceed the number of nonreal zeros of φ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some generalisations of Brown's conjecture

Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|

متن کامل

An Improvement in Temporal Resolution of Seismic Data Using Logarithmic Time-frequency Transform Method

The improvement in the temporal resolution of seismic data is a critical issue in hydrocarbon exploration. It is important for obtaining more detailed structural and stratigraphic information. Many methods have been introduced to improve the vertical resolution of reflection seismic data. Each method has advantages and disadvantages which are due to the assumptions and theories governing their ...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

A Novel Indicator to Predict the Onset of Instability of a Gravitational Flow on a Slope

In order to present a quantitative indicator for the onset of instability, in this paper, the critical points of a stratified gravitational flow on a slope are found and analyzed. These points are obtained by means of the solution of the two-dimensional Navier-Stokes equations via the standard Arakawa-C finite-difference method. Results show that in the marginal Richardson numbers, the critical...

متن کامل

An investigation the effects of geometric tolerances on the natural frequencies of rotating shafts

This paper examines the effects of geometric tolerances on the natural frequencies of rotating shafts. In order to model the tolerances, a code is written in MATLAB 2013 that produces deviated points. Deviated points are controlled by different geometric tolerances, including cylindricity, total run-out and coaxiality tolerances. Final surfaces and models passing through the points are created ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009